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Resumo 

Esta tese elabora sobre os mecanismos subjacentes de agarrar e de um sistema oscilante. Este 

Sistema utiliza métodos de controlo por impedância para se estabilizar e alcançar um comportamento 

cíclico, onde um objeto, uma caneta, é oscilado por dois dedos robóticos. 

Um sistema de percepção bio inspirada é empregue para a deteção da posição do objeto, em 

relação à mão robótica, que por sua vez utiliza esta informação para a sua manipulação. Esta deteção 

é obtida por via das forças e posição de ditas forças nas pontas dos dedos do sistema robótico. 

Pela percepção da posição das pontas dos dedos do sistema, e da anteriormente referida 

deteção da posição da caneta, um método de controlo de impedância foi apresentado, através do 

controlo da força de aperto e do seguimento de uma referência sinusoidal para a trajetória do objeto. 

Adicionalmente, a análise do sistema permitiu estudar a presença de uma frequência de 

ressonância à qual a magnitude de oscilação do objeto pode ser maximizada. A resposta do sistema é 

discutida para uma gama de frequências, amplitudes e deslocamentos da posição inicial da caneta. A 

frequências mais altas, o fenómeno de duplicação de período é evidente, onde uma nova trajetória 

periódica emerge de uma trajetória periódica preexistente. 

 

Palavras-Chave: Agarramento bio inspirado, Comportamento cíclico, Controlo de impedância, 

Impedância em agarrar, Sistema oscilatório. 
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Abstract 

This thesis covers the underlying mechanisms of grasping and an oscillating system. It uses impedance 

control methods to stabilize the system and reach a cyclical behavior where an object, a pen, is oscillated 

by two robotic fingers.  

A bio-inspired perception system is employed for the detection of the position of the object, in 

relation to the robotic hand, which in turn uses this information for its manipulation. Such detection is 

obtained via the forces and position of said forces on the fingertips of the robotic system. 

Through the system’s perception of the position of its fingertips and the aforementioned 

detection of the pen’s position, an impedance control method was put forward, through the control of 

the grasping force and the following of a sinusoidal reference for the object’s trajectory. 

Further, the analysis of the system allowed to study the presence of a resonant frequency at 

which the oscillation magnitude of the object can be maximized. The system’s response is discussed 

for a range of frequency, amplitude and offset of the pen’s position. At higher frequencies, the 

phenomenon of period doubling is made evident, where a new periodic trajectory emerges from the 

existing periodic trajectory at which the pen had been moving thus far. 

 

Keywords: Bioinspired grasping, Cyclical behavior, Impedance control, Impedance of grasping, 

Oscillating system. 
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Nomenclature 

Kinetic Symbols  

𝑑 Radius of the fingertip 
 

𝑤 Diameter of the pen  

𝐿 Length of the pen  

𝑹𝑛
𝑚, �̇�𝑛

𝑚 Rotation matrix between frame 𝑛 and frame 𝑚, and its derivative in time  

𝜃, �̇� Angle of rotation of the wrist and its derivative in time  

𝑞, �̇� Angle of rotation of the pen and its derivative in time  

𝛼, �̇�, �̈� Angle between finger and pen and its derivatives in time  

𝑟, �̇� Distance from the wrist to the fingertip and its derivative in time  

𝛿, �̇� Penetration distance between pen and finger and its derivative in time  

�̇�− Penetrating velocity value on impact  

𝑠 Distance between finger and pen, x-component  

𝑠𝑥 Distance between finger and pen on the contact point, x-component  

𝒄1, �̇�1 Pen’s contact point’s position and its derivative in time  

𝒄2, �̇�2 Finger’s contact point’s position and its derivative in time  

𝒑1, 𝒑1̇ Pen’s position and its derivative in time  

𝒑2, 𝒑2̇ Finger’s position and its derivative in time  

𝝎1 Pen’s angular velocity vector  

𝑣1 Relative velocity of the pen’s contact point to the pen  

𝑣2 Relative velocity of the finger’s contact point to the finger  

𝑣𝑟 Relative velocity between finger and pen  

𝑣𝑥 Relative velocity of contact points of pen and finger, x-component  

𝜆 Interfinger distance on the pen’s body  

𝛶 Height position of the pen  

ℎ Height position of the pen in relation to the fingers  

𝑀 Point in the intersection of a line intersecting both fingers’ center of mass 

and the pen’s 𝑥1 axis 

 

�̂�𝑀,1 Distance from point M to center of mass of pen (frame 1)  

�̂�0,𝑀 Distance from frame 0 to point M  
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Dynamic Symbols  

𝑚𝑝 Mass of the pen 
 

𝑚𝑓 Mass of the finger  

𝑔 Acceleration of gravity  

𝐼𝑧,𝑝 Inertia of the pen regarding the z-axis, around its center of mass  

𝐼𝑧,𝑓 Inertia of the finger regarding the z-axis, around its center of mass  

𝐼𝑧 , 𝐼𝑧,𝑑 Inertia of the system and desired inertia of the system regarding the z-axis  

𝐹, 𝐹𝑥, 𝐹𝑦 Force and its components   

𝑇 Torque  

𝐹𝑛 Normal force  

𝐹𝑡 Friction force  

𝐹𝑡,𝑠 Static friction force  

𝐹𝑡,𝑑 Dynamic friction force  

𝐾 Stiffness coefficient of the normal force  

𝑘 Nonlinear stiffness coefficient of the normal force  

휀 Restitution coefficient of the normal force  

𝛽 Inverse restitution coefficient of the normal force  

𝑎 Geometry coefficient of the normal force  

𝜇𝑠 Static friction coefficient  

𝜇𝑑 Dynamic friction coefficient  

𝐾𝑠 Static friction stiffness coefficient  

𝜆 Static friction damping coefficient  

𝜂 Static friction damping coefficient  

𝛾 Smoothing coefficient for the static friction  

𝑣𝑙𝑖𝑚  Velocity threshold for the transition between dynamic to static friction state  

 

 

Control Symbols  

𝑇𝑠 Time sample 
 

𝑞𝑟 , �̇�𝑟 Reference signal for the pen’s angle and its derivative in time  

𝐴 Amplitude of input reference signal sine wave for the pen’s angle  

𝜔 Frequency of input reference signal sine wave for the pen’s angle  

𝜔𝑟 Resonant frequency of the system  

𝑟𝑟 , �̇�𝑟 Reference for the center point of the fingers and its derivative in time  

𝛿∗ Penetration distance equivalent such that the forces produced in grasping 

are enough to hold the pen 
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𝛿𝑟 Reference for the penetration distance  

𝑞𝑚𝑎𝑥 Max absolute value for 𝑞 over the duration of the simulation  

𝜃𝑚𝑎𝑥 Max absolute value for 𝜃 over the duration of the simulation  

𝐾𝑝,𝑓 Control gain of the position of the center-point of the fingers  

𝐾𝑑,𝑓 Control gain of the velocity of the center-point of the fingers  

𝐾𝑣,𝑓 Control gain of the velocity of the fingers  

𝐾𝑝,𝛿 Control gain of the 𝛿  

𝐾𝑇 Control gain of the angle of the object  

𝐷𝑇 Control gain of the angular velocity of the object  
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1 Introduction 

 

1.1 Motivation 

The act of object grasping is quite a complex ability, unique to some select few in the animal kingdom 

[1] and without a doubt the most important trait that allowed for the evolution of Homo sapiens, humans, 

as we know them today. It allowed early primates to take up tool use [2] and to control fire [3, 4], two 

defining abilities that mark the start of the human era. 

Grasping is not easy, which is reflected on the abundance, or lack thereof, of this ability in the 

wild [2]. This technique proves very worthwhile, though the combination of high dexterity and intelligence 

is often prohibitive to many, it rewards greatly those who master it [5] with a rapid ascension in the food 

chain hierarchy. 

This ability was used by ancient humans for tool making [6, 7] and it took up a big part of their 

time, where the ability to grasp and work the tool were crucial for survivability. A depiction of such activity 

is illustrated in Figure 1.1. 

 

Figure 1.1 – Depicted some early humans in the act of tool making. Tool use can be seen abundantly, marking just 
how important grasping mastery truly is. Drawn from [8]. 

 

The motivation behind this essay lies on the drive to better understand the art of grasping and 

the ability for complex hand maneuvers. How this knowledge could be applied to robotics or possibly 

prosthetics, where a mechanical system need be able to execute the fluid yet complex movements a 

human can do with ease, almost without any critical thinking behind it. 



2 
 
 

 

Contemporary uses of grasping in robotic handling generally consist of holding the grasped 

object steady and firmly to manipulate it [9, 10, 11]. In these cases, the robot does not consider motion 

decoupled from the object being manipulated.  

Some research has also been done on the controlled grasping of fragile items, including 

catching a falling egg [12] and grabbing a house-hold mug [13]. The former made use of an impedance 

control strategy to successfully catch falling raw eggs without breaking them.    

This work attempts to use the mix of quick movements and impedance control to dynamically 

manipulate and oscillate an object, and to act as an inspiration for further development in the dynamic 

manipulation of objects. 

 

1.2 Objective and Methods 

The goal of this study is to build a biologically inspired model of a robotic hand and a controller capable 

of handling a pen through complex motion, specifically the ability to wiggle the pen on the fingertips, 

making an oscillating cycling motion. The model must reflect its biological counterparts regarding the 

sensing and the signal propagation of the system. Additionally, the controller should be robust regarding 

the system’s operating characteristics and outside factors that might disturb the well-functioning of the 

system. 

Towards this goal, such model was constructed, and an impedance-based control was 

implemented at the level of grasping and object maneuverability, while position control was implemented 

at the level of the positioning of the fingers. The system’s response is then thoroughly discussed and 

analyzed so as to evaluate its stability, robustness and cyclicity. 
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2 Model 

The geometric hypotheses for the model are that the problem can be simplified as a 2-D task, both 

fingertips are of circular geometry, the pen is cylindrical and perfectly straight, and the contact occurs in 

a singular point on the bodies. Given these, a kinematic model for each body was created. For ease of 

writing, the pen will be referenced as body 1 and the upper fingertip and lower fingertip as body 2 and 

2′ respectively in this document. Below, in Figure 2.1, the pen’s model is illustrated. In Figure 2.2 the 

robotic hand’s model is illustrated, where its construction is displayed. 

 

Figure 2.1 – Pen model. The pen is able to move along both the x-axis and y-axis and is able to rotate around the 
z-axis and its rotation is given by the angle q. Its reference frame is numerated with the number 1. 

 

Figure 2.2 – Robotic hand model. The wrist joint is represented as a cylinder, conveying a rotation between the 
fixed base and the fingertips by an angle 𝜃. The fingertips have their respective frames of reference attached to 

them, namely 2 and 2′. Their displacement from the rotation axis, 𝑧0, is measured along 𝑦2 and 𝑦2
′ , as noted by 𝑟 

and 𝑟′. 

𝒚0 

𝒙0 

𝒑1 

𝑞 𝒙1 

𝒚1 

Fingertip 

Wrist 

𝒙2 

𝒚2 

𝒛2 

𝒛2′ 

𝒙2′ 𝒚2′ 

𝒛0 

𝒙0 

𝒚0 

𝑟 

𝑟′ 

𝜃 
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The hypotheses in relation to the contact are that the bodies have a constant friction coefficient 

between the surfaces (fingertip-pen) and that there are no adhesive forces. The model used for the 

normal contact forces was the Hunt-Crossley model, with a non-adhesive exponential extension [14]. 

For the tangential forces, an adaptation of the static-kinetic friction by Coulomb [15] is used. Both will 

be detailed further ahead into the document. 

The dynamic model was formulated in Simscape™ , a modeling tool within the Simulink® 

environment. This modeling tool was chosen as it facilitates a high-performance formulation for the 

dynamics of the multibody system, whose parameters are gathered in Table 1. Through this approach, 

the user need only specify the forces affecting each body and the motion constraints between them. 

Towards this end, a construction that follows the aforementioned models was designed in 

SolidWorks, in order to be used in Simscape™ to visualize the bodies in motion. The construction of the 

two bodies is detailed in the next section. 

Table 1 – Parameters of the dynamic models. The finger corresponds to the full finger, including the fingertip and 
the finger body, moved by the prismatic joint. The inertia that of the body’s z-axis, at its center of mass. The center 
of mass is in relation to the geometric center of the object, in the 2-D plane considered in this document. 

 Mass [𝑔] Inertia (z-axis) [𝑔𝑚𝑚2] Center of mass [𝑚𝑚] 

Pen 4.5 7099.9 [0 0 0]𝑇 

Finger 16.3 1651.7 [0 0 55.55]𝑇 

Base 158.7 17584.0 [0 0 0]𝑇 

 

2.1 Simulation environment 

The environment consists of the two subsystems, the robotic hand and the pen. These are simulated in 

a virtual world that is affected by gravity, with a magnitude of 9.81m/s2 and the negative direction of the 

y-axis. 

 

2.1.1  Pen 

The pen, modeled in SolidWorks, is cylindrical and perfectly straight. Its center of mass is located at its 

geometric center. It has a length of 132 mm and a diameter of 8 mm, illustrated in Figure 2.3. 

 

Figure 2.3 - Pen model designed in SolidWorks, with its respective dimensions and frame of reference. 
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2.1.2  Hand 

The robotic hand also had its wrist modeled in SolidWorks, while its the fingers were adapted from 

another source [16]. The fingertips are identical and cylindrical, with a radius of 8.89 mm. The full robotic 

hand construction is illustrated in Figure 2.4.  

 

Figure 2.4 - Robotic hand model, wrist (in yellow) designed in SolidWorks and fingers (in grey) adapted from [16], 
with its respective frame of reference. 

 

 

2.2  Contact 

By using the position and velocity of the pen and fingertips it is possible to obtain the forces that would 

result from the contact between them. These forces are then applied to these entities to simulate their 

motion. In the next calculations, the equations presented refer to the interaction between the upper 

fingertip and the pen. The dynamics for the lower fingertip will be equivalent, often symmetrical to those 

of the upper finger. 

 

2.2.1  Fingertip position and velocity in the < xy >0 plane 

Using simple trigonometry, the finger’s position and velocity in the world frame of reference is calculated. 

This is clear in Figure 2.5 and is followed up with equation (2.1). 



6 
 
 

 

 

Figure 2.5 – Fingertip in relation to reference frame 0 (world frame). The variables that describe its motion are the 
distance to the wrist 𝑟, and the wrist’s angle of rotation 𝜃. 

 

 𝒑𝟐 = [
−𝑟sin(𝜃)

𝑟cos(𝜃)
0

] , �̇�2 = [
−�̇�sin(𝜃) − 𝑟cos(𝜃)�̇�

�̇�cos(𝜃) − 𝑟sin(𝜃)�̇�
0

] (2.1) 

  

 

2.2.2  Object penetration distance 

To define a contact event between the finger and the pen, the distance between the finger and the pen 

needs to be determined. In this case, the distance of penetration (𝛿) is calculated instead, where it is 

positive (𝛿 > 0) if the bodies are penetrating each other, meaning contact is taking place, or non-positive 

(𝛿 ≤ 0) if they are apart [14]. In other words, it is considered that 

thefingerandthepenare {
separated, if𝛿 ≤ 0,
incontact, if𝛿 > 0.

 (2.2) 

Analyzing Figure 2.6 it is clear that 𝛿, 𝑑 and 𝑤/2 relate to the positions of the bodies, specifically to their 

y component on reference frame 1 (the pen). Since there is a need to rotate between reference frames 

around the z-axis (2-D), rotation matrices will be used throughout the document, denoted as 𝑹. To rotate 

the vector components from reference frame 1 to reference frame 0, the respective rotation matrix is 

𝑹𝑧(𝑞) = 𝑹1
0 = [

𝑐𝑜𝑠(𝑞) −sin(𝑞) 0

sin(𝑞) cos(𝑞) 0
0 0 1

], (2.3) 

while the rotation matrix to rotate back to reference frame 1, from reference frame 0, is simply the 

transpose of this matrix, 𝑹1
0𝑇 = 𝑹0

1. Furthermore, for simplicity, the rotation 𝑹1
0 is often denoted as 𝑹1. 

Finger 

�̇� 

𝒚0 

𝒙0 

𝜃 < 0 

𝒙2 

𝒚2 

𝑟�̇� 

�̇� 

𝒑2 



7 
 
 

 

    

Figure 2.6 - Visualization of the penetrating distance, 𝛿. (1) Pen’s body, (2) Finger’s body. The point in each body 
that is the closest to the other body is drawn in red. The position vector of the contact points of the pen and the 
fingertip, c1 and c2 respectively are also drawn. The angle α relates the rotation between reference frame 1 and 
reference frame 2. 

 

 The relative displacement between the bodies’ positions, 𝒑2 − 𝒑1, may be projected onto the y-

axis of the pen’s frame through 𝒋̂𝑇𝑹1
𝑇(𝒑2 − 𝒑1). This distance is equal to negative 𝛿 plus the thickness 

of the bodies, or 

𝒋̂𝑇𝑹1
𝑇(𝒑2 − 𝒑1) = 𝑑 − 𝛿 +

𝑤

2
, (2.4) 

where 𝒋 ̂is the unit vector regarding to the second component. It becomes relevant to define the unit 

vectors, �̂�, 𝒋,̂ �̂� as 

[
�̂�
𝒋̂

�̂�

] = [
1 0 0
0 1 0
0 0 1

]. (2.5) 

 From equation (2.4), the penetrating distance is readily obtained as 

𝛿 = 𝑑 +
𝑤

2
− 𝒋̂𝑇𝑹1

𝑇(𝒑2 − 𝒑1). (2.6) 

Furthermore, the velocity of the penetrating distance can be calculated by differentiation of the 

above equation (2.6), resulting in 

�̇� = −𝒋̂𝑇[𝑹1
𝑇(�̇�2 − �̇�1) + �̇�1

𝑇(𝒑2 − 𝒑1)], (2.7) 

Pen 

𝒚2 

𝒙1 

𝒙2 
𝛼 > 0 

𝜃 < 0 

𝑞 > 0 

(2) 

(1) 

Finger 

𝒚1 

𝒙0 

𝒚0 
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where �̇�1
𝑇 is the time derivative of the rotation matrix 𝑹1

𝑇, obtained through �̇� =
𝜕𝑹

𝜕𝑞
�̇�, resulting in  

�̇�1
𝑇 = [

− sin(𝑞) − cos(𝑞) 0

cos(𝑞) − sin(𝑞) 0
0 0 0

]

𝑇

�̇�. (2.8) 

 

2.2.3  Contact points’ kinematics 

The point in each body that is the closest to the other body are now determined. Each one is expressed 

in the reference frame of the body they belong to. Recalling Figure 2.6, 𝒄1 is obtained from the sum of 

its vectorial components 𝑠 and 𝑤 2⁄ .  Similarly, to 𝛿 in equation (2.6), s is calculated as 

𝑠 = �̂�𝑇𝑹1
𝑇(𝒑2 − 𝒑1), (2.9) 

where �̂� is the unit vector regarding to the first component. Thus, the position vector for the contact point 

on the pen can be written as 

𝒄1 = [𝑠 𝑤/2 0]𝑇 . (2.10) 

Moving on to the contact point on the finger 𝒄2, when expressed in the pen’s reference frame 

(frame 1), it is simply its radius in the direction normal to the pen, therefore it is 

𝑹2
1𝒄2 = [0 −𝑑 0]𝑇 , (2.11) 

where 𝑹2
1 is the rotation matrix from frame 2 to frame 1, corresponding to a rotation by an angle 𝛼, 

represented in Figure 2.6 as the angle between the fingertip and the pen. The rotation matrix is therefore 

𝑹2
1𝑇 = 𝑹1

2 ≜ 𝑹𝑧(𝛼), (2.12) 

and the contact point can then be expressed in the finger’s reference frame through 

𝒄2 =𝑹1
2[0 −𝑑 0]𝑇 . (2.13) 

Finally, the angle 𝛼 is obtained from the rotation angle between frames 1 and 2. As such, it can 

be obtained from the rotation angle of frame 1, q, and the rotation angle of frame 2, 𝜃. Thus, from 

inspection of Figure 2.6, 𝛼 follows as 

𝛼 = 𝑞 − 𝜃, (2.14) 

and its derivative, �̇�, is simply 

�̇� = �̇� − �̇�. (2.15) 
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2.2.4  Relative velocity between the finger and pen at the point of 

contact 

The relative velocity between the objects at their collision point can be calculated by the difference of 

each of the object’s contact points’ velocities. It then becomes important to know these points’ velocities, 

illustrated in Figure 2.7. 

 

Figure 2.7 – Pen and finger with their corresponding velocities and angular velocities drawn, as well as important 
dimensions. The point in each body that is the closest to the other body is drawn in red. 

 The finger’s contact point’s velocity is then calculated as the sum of the finger’s own velocity 

and the tangential velocity resulting from the angular velocity of the finger and the radius of contact. The 

finger was considered to be deformable and thus the radius of contact is given as the finger’s radius 

minus the penetration distance 𝛿. The finger’s contact point’s velocity is then  

𝑹2
1𝒗2 = 𝑹0

1 �̇�2 + [
(𝑑 − 𝛿)�̇�

0
0

]. (2.16) 

Following the same logic, the pen’s contact point’s velocity can also be calculated as the sum 

of the pen’s velocity and the tangential velocity resulting from its angular velocity, 𝝎1 = �̇��̂�, and the 

distance between its contact point and the center of mass 

𝒗1 = 𝑹0
1�̇�1 +𝝎1 × 𝒄1. (2.17) 

Lastly, the relative velocity is calculated by subtracting the velocities between the contact points 

of the objects in equations (2.16) and (2.17), resulting in 

𝒗𝑟 =𝑹2
1 𝒗2 − 𝒗1. (2.18) 

�̇�2 

(1) 

Finger 

Pen 

�̇�1 

(2) 
𝒙2 

𝒚2 
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2.2.5  Normal force 

For the calculation of the normal force between both objects on the event of a collision, the Hunt-

Crossley model was used. Furthermore, a non-adhesive extension to this model is implemented, as 

detailed in [14]. The normal force 𝐹𝑛 is given by 

𝐹𝑛 = {
−𝐾𝛿𝑎,𝛿 ≥ 0
0, otherwise

 (2.19) 

where 𝑎 is a geometry exponent and 𝐾 can be calculated by the expression 

𝐾 =

{
 
 

 
 𝑘 (1 +

𝛿

�̇�−

̇
𝛽), �̇� ≥ −휀�̇�−

𝑘(1 − 𝛽휀)exp (
𝛽

1 − 𝛽휀

�̇� + 휀�̇�−

�̇�−
) , otherwise

 (2.20) 

where 𝑘 is the nonlinear stiffness coefficient of the collision, �̇�− is the value of �̇� right before impact, 휀 is 

the restitution coefficient and 𝛽 is the inverse restitution, given in [14] as 

𝛽 = ∑
𝐴𝑛
𝐵𝑛
(휀 − 1)𝑛

∞

𝑛=1

≈ −
3

2
(휀 − 1)

11 − 휀

1 + 9휀
 (2.21) 

where the terms 𝐴𝑛 and 𝐵𝑛 can be found in Table 5 (appendix). The first 20 terms of 𝐴𝑛 and 𝐵𝑛 were 

used for the calculation of 𝛽. The previous parameters are gathered in Table 2. 

An illustration of how the normal force varies with 𝛿 and �̇� is pictured in Figure 2.8, below. 

   

Figure 2.8 – Normal force varying with the penetration distance, 𝛿, and its velocity, �̇�. 

 

 

 

�̇� 

𝐹𝑛 

𝛿 

−휀�̇�− 
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Table 2 – Normal force parameters 

Parameter Value Units 

𝑎 3 2⁄  − 

𝑘 2 × 105 𝑁 𝑚𝛼⁄  

휀 0.2 − 

𝛽 4.8719 − 

 

2.2.6  Frictional force 

The force created by the existence of friction between the two objects can be split into two states, the 

static friction state, when the objects are in adhesion, and the dynamic friction state, when the objects 

slide over one another. The transition between these states is detailed in Figure 2.9 and described as 

follows. This system was adapted from [17]. 

 

 

Figure 2.9 – State machine of the friction force. The system begins at the sliding state. 

 

The contact transitions to adhesion if the tangential velocity between the bodies, 𝑣𝑥, is lower 

than some limit 𝑣𝑙𝑖𝑚. The transition from adhesion to sliding occurs when the normal force, 𝐹𝑛, multiplied 

by the static coefficient 𝜇𝑠 is lower than the static friction force 𝐹𝑡,𝑠. 

 The sign function is now introduced, as it is relevant for the calculation of the friction forces. It 

takes in one argument and indicates whether its argument is positive or negative, returning the unit 

value with its respective sign. This function is defined as 

 

sign(𝑢) =  {
1, 𝑢 > 0,
0, 𝑢 = 0,
−1, 𝑢 < 0.

 (2.22) 

   

 

 

Sliding 
Adhesion 

𝑡 = 𝑡0 

ȁ𝑣𝑥ȁ < 𝑣lim 

𝐹𝑡,𝑠 > 𝐹𝑛𝜇𝑠 
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2.2.6.1  Static friction (Adhesion) 

In the aforementioned system, the static friction may be modeled as a nonlinear spring that connects 

and promotes an adhesive force between two bodies. This force is usually written in the form of [17] 

𝐹𝑡,𝑠
∗ = −𝐾𝑠𝑠𝑥 (1 +

𝜆

𝐾𝑠
sign(𝑠𝑥)𝑣𝑥), (2.23) 

compromising a linear spring, with stiffness 𝐾𝑠, and a nonlinear damping, proportional to 𝜆𝑠𝑥, where 𝑠𝑥 

is the spring’s displacement. 

This model presents some drawbacks which are improved upon in this work. The first handicap 

follows from observation of the force changes around 𝑠𝑥 = 0. In particular, one finds that the partial 

derivatives with respect to 𝑠𝑥 equate to 

lim
𝑠𝑥→0

−

𝜕𝐹𝑡,𝑠
∗

𝜕𝑠𝑥
= −𝑘 + 𝜆𝑣𝑥 ≠ lim

𝑠𝑥→0
+

𝜕𝐹𝑡,𝑠
∗

𝜕𝑠𝑥
= −𝑘 − 𝜆𝑣𝑥 . 

(2.24) 

Since the derivatives from below and above are distinct, it is true that the force model in (2.23) is not 

smooth. That said, in the advent of external forcing terms, the previous non-differentiability may lead to 

force changes that are nearly discontinuous. Thus, with the goal of unburdening the simulation with an 

unnecessary stiff behavior, the sign function can be replaced with a sigmoid function, the hyperbolic 

tangent. In this way, the force is smooth throughout the range of 𝑠𝑥. A smoothing coefficient, 𝛾, is used 

to tune the logistic function’s response, where a smaller 𝛾 equates to a smoother transition and a larger 

one approaches the sign function, lim
𝛾→∞

tanh(𝛾𝑥) = sign(𝑥). 

 Another observation can be found in the fact that 𝐹𝑡,𝑠
∗  is not strictly adhesive, in contradiction to 

the definition of this force. To see this, consider 𝑠𝑥 > 0 without any loss in generalization, in which case 

the model should generate and adhesive force, or 𝐹𝑡,𝑠
∗ < 0. However, when 𝑣𝑥 < −𝑘/𝜆 it is true that 

𝐹𝑡,𝑠
∗ > 0, which is a separation force. Following [14], this can be solved by the introduction of a stiffness 

term that increases exponentially with the velocity, 𝐾(�̇�) = 𝑘𝑒𝜂�̇�, which can be paired with the previous 

modification to write a differentiable and strictly adhesive friction force as 

𝐹𝑡,𝑠 = −𝐾𝑠𝑠𝑥 exp(𝜂 tanh(𝛾𝑠𝑥)𝑣𝑥). (2.25) 

 

Table 3 – Friction force parameters. 𝜇𝑠 adapted from [18] and 𝜇𝑑 from [19].  

Parameter Value Units 

𝐾𝑠 104 𝑁 𝑚2⁄  

𝜂 2 × 104 𝑠 𝑚⁄  

𝛾 80 − 

𝜇𝑠 0.7 − 

𝑣𝑙𝑖𝑚 10−3 𝑚 𝑠⁄  

𝜇𝑑 0.3 − 
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Here, the spring’s displacement, 𝑠𝑥 , is calculated from the object’s relative tangential velocity by 

integration, 

𝑠𝑥(𝑡) = ∫ 𝑣𝑥(𝑢)𝑑𝑢 + 𝑠𝑥(𝑡0)
𝑡

𝑡0

, (2.26) 

where 𝑡0 is the time at which the contact is deemed adhesive, seen in Figure 2.9 as the transition from 

sliding to adhesion, and 𝑡 > 𝑡0  the time during the contact event. Also, 𝑠𝑥(𝑡0) is the initial spring’s 

displacement from the transition of dynamic to static friction, which will be later calculated in the dynamic 

friction section, in equation (2.31). Figure 2.10 illustrates how the force varies with the displacement (𝑠𝑥) 

and the tangential velocity (𝑣𝑥). 

 

Figure 2.10 – Static friction force, 𝐹𝑡,𝑠, varying with the displacement 𝑠𝑥 and tangential velocity 𝑣𝑥. 

 

Finally, the transition from static to dynamic friction was modeled to occur when the static friction force 

overcame the allowable force as per Coulomb’s friction law [15]. This event happens when 

𝐹𝑛𝜇𝑠 < 𝐹𝑡,𝑠, (2.27) 

where 𝜇𝑠 is the static friction coefficient [18]. 

 

2.2.6.2  Dynamic friction (Sliding) 

The dynamic friction was also modeled following Coulomb’s friction law [15], such that the friction force 

is given as 

𝐹𝑡,𝑑 = −sign(𝑣𝑥)𝐹𝑛𝜇𝑑, (2.28) 

𝐹𝑡,𝑠 

𝑣𝑥 

𝑠𝑥 
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where, once again, 𝑣𝑥 is the relative tangential velocity between the finger and the pen and 𝜇𝑑 is the 

dynamic friction coefficient. 

The transition from dynamic friction back to static friction was modeled to happen when the 

relative tangential velocity between both objects is very small [17, 15], such that 

ȁ𝑣𝑥ȁ − 𝑣lim < 0, (2.29) 

where 𝑣lim is a velocity limit that at which the contact is said to be in sliding. 

Lastly, to promote a smooth transition from the sliding to the adhesion state, the initial 

displacement for the spring needs to be calculated. For this to happen, 𝑠𝑥(𝑡0)  is calculated by 

establishing continuity between the sliding and friction forces, 𝐹𝑡,𝑠 = 𝐹𝑡,𝑑. Thus, it is desired to find 𝑠𝑥(𝑡0) 

that satisfies 

𝐾𝑠𝑠𝑥 exp(𝜂 tanh(𝛾𝑠𝑥)𝑣𝑥) = 𝐹𝑡,𝑑.   (2.30) 

As 𝑣𝑥 is bound to be very small in value (𝑣𝑥 ~10
−3) from equation (2.29), it is reasonable to state that 

exp(𝜂 tanh(𝛾𝑠𝑥)𝑣lim) ≈ 1. Thus, calculating the initial displacement for the transition yields 

𝑠𝑥(𝑡0) =
𝐹𝑡,𝑑

𝐾𝑠
. (2.31) 

  

2.2.7  Forces and torque applied on the system 

Returning to the hand and the pen models, with all the relevant forces calculated, their impact on the 

pen can then be summarized as a force from the upper finger, 

𝑭1 = [
𝐹𝑡
−𝐹𝑛
0

], (2.32) 

and lower finger, 

𝑭1
′ = [

𝐹𝑡
′

𝐹𝑛
′

0

], (2.33) 

and a torque 

𝑇1 = �̂�
𝑇(𝒄1 × 𝑭1 + 𝒄1

′ × 𝑭1
′ ) (2.34) 

  

applied on the center of mass of the pen, where �̂�𝑇 is the unit vector regarding the z-axis. 
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Naturally, following Newton’s third law, the force applied on the finger will be of equal magnitude 

and opposite direction of the force applied on the pen. Furthermore, given the circular geometry of the 

finger and the arrangement of the joints (Figure 2.2), only the x component of the force applied on it 

produces a torque about 𝑧0. That said, the force being acted on the upper finger is 

𝑭2 = 𝑹1
2(−𝑭1), (2.35) 

and on the lower finger is 

𝑭2
′ = 𝑹1

2′(−𝑭1
′ ), (2.36) 

thus, the torque follows from the distance between the finger’s rotation joint, the wrist, and the point of 

contact, and the force applied on the point of contact, resulting in 

𝑇2 = −�̂�
𝑇𝑭𝟐(𝑟 − (𝑑 − 𝛿)) − �̂�

𝑇𝑭𝟐
′ (𝑟′ − (𝑑 − 𝛿′)). (2.37) 

Note that 𝑇2 is exerted about 𝑧0 of the revolute join, while 𝐹2 is exerted along 𝑦2 of the prismatic joint 

and 𝐹2
′ along 𝑦2

′ . 
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3 Physiology of the human touch - Perception 

With the purpose of creating a bio-inspired controller for the hand, it is important for the perception of 

the model to also be nature-like and to follow the physiological limits of a human hand. It therefore is 

essential to know the intricacies of the human touch, which means getting to know the 

mechanoreceptors in the fingertips and in the relevant muscles, in order to replicate their behavior. 

 

3.1 Skin mechanoreceptors 

A mechanoreceptor is a sensory receptor that responds to mechanical pressure or distortion. There are 

several types of these sensors within the human skin. This document focuses on the study of the 

mechanoreceptors located in glabrous (hairless) mammalian skin, which is the skin present in the 

fingertips of primates and other mammals similar to humans. There are four main types of 

mechanoreceptors in the skin region, namely Meissner corpuscles, Merkel cells, Pacinian corpuscles 

and Ruffini endings. A summarized description of these can be found in Table 4, taken from [20]. 

 

Figure 3.1 – The four mechanoreceptors responsible for the sense of touch, illustrated in the cross section of the 
glabrous skin shows the principal receptors for touch. The Meissner corpuscles and Merkel cells lie in the superficial 
layers of the skin, 0.5 to 1.0 mm below the skin surface. The Pacinian and Ruffini corpuscles lie within the dermis, 
2-3 mm below the skin surface. This figure was taken from [20]. 



18 
 
 

 

3.1.1  Meissner corpuscles 

The Meissner corpuscle is a rapid adapting type 1 (close to skin surface) receptor, abbreviated as RA1. 

This receptor is illustrated near the epidermis on Figure 3.1. This corpuscle is responsible for sensitivity 

to light touch, slippage of objects and the detection of the texture of surfaces it encounters. In particular, 

they have their highest sensitivity when sensing vibrations between 10 and 50 hertz. The key features 

that the Meissner corpuscle would be able to integrate into the present model are then: 

• Normal force;  

• Tangential force. 

 

3.1.2  Merkel cells 

Merkel cells are slowly adapting type 1 receptors, abbreviated as SA1, located near the epidermis, as 

visualized in Figure 3.1. They are responsible for detecting the amount of pressure applied on the skin 

and are particularly sensitive to edges, corners and points. Similarly to the Meissner corpuscle, they 

also play an important role in the detection of textures. The key features that the Merkel cells would be 

able to integrate into the present model are then: 

• Position of contact with the finger and its rate of change. 

 

3.1.3  Pacinian corpuscles 

The Pacinian corpuscle is a rapid adapting type 2 (deep in the skin) receptor, abbreviated as RA2, which 

is located in the subcutaneous tissues (dermis). They can be identified in Figure 3.1 deep within the 

dermis. This mechanoreceptor is larger than the others and is responsible for the detection of higher 

frequency vibrations, ranging from 5 to 1000 hertz. The detection of vibrations has no impact in the 

development of this model and as such this corpuscle does not provide any meaningful information. 

 

3.1.4  Ruffini endings 

Ruffini endings are slowly adapting type 2 receptors, SA2, that extend from the subcutaneous tissue to 

folds in the skin at the joints, in the palm or in the fingernails. These receptors are sensitive to the shape 

of large objects and can signal movements of the fingers and other joints due to stretch in the overlying 

skin. In combination with the muscle mechanoreceptors, mentioned in the next section, the key features 

that the Ruffini endings would be able to integrate into the present model are then: 

• Position of finger; 

• Position of the wrist. 
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Table 4 – Cutaneous mechanoreceptor system, as found in [20]. 

 

 

3.2 Muscle mechanoreceptors 

3.2.1  Muscle spindle 

Muscle spindles are proprioceptors whose main function it is to provide information on muscle length 

and the rate of change of muscle length. These receptors run parallel to the muscle fibers and are 

composed of three main parts: (1) Intrafusal muscle fibers; (2) sensory fibers that terminate in the 

noncontractile regions of the intrafusal fibers; and (3) motor axons that terminate in the contractile 

regions of the intrafusal fibers, as illustrated in Figure 3.2. 

 

Figure 3.2 – The muscle spindle, the principal receptor mediating proprioception. Its three main components, are: 
(1) Intrafusal muscle fibers; (2) Sensory endings; and (3) Afferent axons. This figure was taken from [20]. 
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The key features that the muscle spindle would detect from the model are then: 

• Position and velocity of the finger; 

• Angle and angular velocity of the wrist. 

 

3.2.2  Golgi tendon organ 

The Golgi tendon organ is a proprioceptor located at the junction between skeletal muscles and tendons. 

It is a slender encapsulated structure that has as its main function to detect muscle force. 

This organ does not provide meaningful information for the model at hand as the forces affecting 

the muscles are not used for the control of the task. 

 

3.3 Spinal cord 

To convey the somatosensory information acquired by the mechanoreceptors 𝐴𝛼 nerve fibers stretch 

from the nerve bundles where the receptors are connected, through the spinal cord to the brain for 

decision making. The nerve fiber distance between the fingertip and the brain is approximately 0.8 

meters [20] and its conduction velocity is 35-70 𝑚/𝑠 (Table 4), meaning that in 𝐴𝛼 nerve fibers delays 

range 7.5 milliseconds to 12.5 milliseconds, with the mean delay being 10 milliseconds and the arrival 

times varying by only 5 milliseconds [20]. 

Furthermore, in voluntary movement, “movement-related (neural) activity typically begins 50 to 

150 ms before the onset of agonist muscle activity”, found in [20].   

There are then two types of delay in the neurological system, an inbound delay of about 10 

milliseconds, that affects perception, and an outbound delay of about 100 milliseconds, that affects the 

action response. 

 

3.4 Model variables usable from the model 

It then follows that from the many sensory cells and mechanisms discussed above that there are a total 

of 14 state variables usable for the perception and control of the pen. Briefly, these are: 

1. Angle between the pen and the upper finger (�̂�); 

2. Angle between the pen and the lower finger (�̂�′); 

3. Rate of change of the angle between the pen and the upper finger (�̇̂�); 

4. Rate of change of the angle between the pen and the lower finger (�̇̂�′); 

5. Tangential force felt by the upper finger (�̂�𝑡); 

6. Normal force felt by the upper finger (�̂�𝑛); 
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7. Tangential force felt by the lower finger (�̂�𝑡
′); 

8. Normal force felt by the upper finger (�̂�𝑛
′); 

9. Upper finger’s position (�̂�); 

10. Lower finger’s position (�̂�′); 

11. Wrist’s angle (�̂�); 

12. Upper finger’s velocity (�̇̂�); 

13. Lower finger’s velocity (�̇̂�′); 

14. Wrist’s angular velocity (�̇̂�). 

 

These variables are then manipulated in order to build a controller capable of performing the task 

of wiggling the pen in between the fingertips, in the sections to come. 
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4 Estimation of the pen’s position 

In order to detect the pen’s position, the estimator is assumed to know the dimensions, the mass and 

the inertia of the pen and finger. Moreover, for detection to take place, a normal force must be detected 

on the fingers, marking the pen’s presence known. If no forces are detected in either finger, then the 

pen is not detected, resulting in its position being assumed to be where it was last detected at. 

 

4.1 Angle estimation 

Firstly, from the manipulation of equation (2.14), the estimated angle of the pen �̂� is calculated simply 

as the estimated angle of the wrist (�̂�) plus the estimated angle of contact (�̂�),  

�̂� =  𝜃 + �̂�. (4.1) 

As the angle �̂� is only detected when there is contact with the pen, equation (4.1) is only valid 

when one of the fingers is in contact with the pen. By differentiating equation (4.1), the estimated pen’s 

angular velocity is obtained as the sum of the angular velocity of the wrist and the contact’s, 

�̇̂� =  �̇̂� + �̇̂�. (4.2) 

Due to the limitations of the sensory system, the angular acceleration of the wrist and the 

contact’s is unknown and as such needs to be approximated. To do so, consider that there is a frequency 

at which the estimation of �̂� and �̂� are precepted, in the muscle, [21, 22], and on the Merkel cells, Table 

4, respectively. This frequency results in a time sample of 0.01 seconds, which can be used to estimate 

the angular acceleration, by subtracting the estimated angular velocity of the pen and the angular 

velocity estimated at a previous timestep and then dividing over the time sample, resulting in 

�̈̂� =
�̇̂�𝑡 − �̇̂�𝑡−1

𝑇𝑠
. (4.3) 

 

4.2 Position estimation 

Secondly, the position of the pen in relation to the fingers is estimated. To this end, the distance between 

the fingers is first calculated by using the angle at which the pen is felt on the finger (�̂�) as follows. 
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Figure 4.1 – Illustration of the pen between the fingers and definition of relevant variables for detection. The distance 
between the fingers, in the tangential direction of the pen, is given by𝜆. The x component of the distance from the 

pen’s contact points to its center of mass, 𝑠 and 𝑠′ are defined. 𝑀 is the intersection point between a line that joins 

the two fingers and the pen’s x-axis, 𝑥1. 

 

As illustrated in Figure 4.1, the interfinger distance (𝜆) is estimated as 

𝜆 = 2 (𝑑 +
𝑤

2
) tan(�̂�). (4.4) 

Then, the forces felt on the fingers are used to estimate the forces affecting the pen, on the upper contact 

point 

�̂�1 = �̂�2
1(−�̂�2), (4.5) 

and lower contact point 

�̂�1
′ = �̂�2′

1 (−�̂�2
′ ). (4.6) 

These forces are used to estimate the distance they span from the center of mass of the pen by equating 

all the torques applied on the pen and its apparent rotation on the fingers. Towards this end, the 

distances from the upper finger and the lower finger to the center of mass of the pen, 𝑠 and 𝑠′, are first 

related to the interfinger distance, as 

�̂� = 𝜆 + �̂�′. (4.7) 

Also, the position vectors for both contact points (�̂�1and�̂�1′) on the pen are able to be estimated as 

Upper finger 

𝒙2 

𝒚2 

𝛼 

Lower finger 

Pen 

𝑀 
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�̂�1 = [�̂�
𝑤

2
0]
𝑇

 (4.8) 

and 

�̂�1
′ = [�̂�′ −

𝑤

2
0]
𝑇

. (4.9) 

  

Then the torque balance can be equated, resulting in 

𝐼𝑧,𝑝�̈̂� = �̂�1 × �̂�1 + �̂�1
′ × �̂�1

′ . (4.10) 

where 𝐼𝑧,𝑝 is the inertia of the pen. Now, introduction of equations (4.7), (4.8) and (4.9) into (4.10), results 

in 

𝐼𝑧,𝑝�̈̂� = −�̂�𝑡 
𝑤

2
+ �̂�𝑛�̂� − �̂�𝑡

′ (−
𝑤

2
) + �̂�𝑛

′�̂�′ (4.11) 

and the distance from the fingers to the center of mass can be solved as 

{
 
 

 
 
�̂�′ =

𝐼𝑧,𝑝 �̈̂� +
𝑤
2
�̂�𝑡 − 𝜆�̂�𝑛 −

𝑤
2
�̂�𝑡
′

�̂�𝑛 − �̂�𝑛
′

,

�̂� = 𝜆 + �̂�′.




 (4.12) 

With the distances between the center of mass and each finger calculated, the distance between 

the mass center and point 𝑀 can now be calculated as the average of both distances, in the opposite 

direction. Thus, the displacement from point 𝑀 towards the mass center can be estimated, in the world 

frame, as 

 �̂�𝑀,1 = �̂�1
0 [
− (

�̂�+�̂�′

2
)

0
0

]. (4.13) 

The next step is to calculate the contribution of the fingers’ position to the position of the pen’s 

center of mass. Towards this end, a line is imagined connecting the fingers vertically, like done in Figure 

4.2. 

Then the vertical distance from the point 𝑀 to the axis 𝑧0, Υ, is estimated, illustrated in Figure 

4.2. In the simple case where both fingers are in contact with the pen, this height comes up to the 

average of the fingers’ estimated distance to the wrist �̂� and �̂�′, given as 

Υ =
�̂� − �̂�′

2
, adjacenttobothfingers. (4.14) 
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Figure 4.2 – More relevant variables for detection. A vertical dotted line connects the two fingers. The intersection 

between this line and the pen’s 𝑥1 axis is the point 𝑀, marked by a blue circle. ȁΥȁ is the distance between the 𝑧0 
axis and point 𝑀 and it is measured positively along 𝑦2. The distance between 𝑀 and the finger in contact with the 

pen is denoted as ℎ. On the left the pen is adjacent to the lower finger, while on the right it is adjacent to the upper 
finger. 

 

However, if the pen is only in contact with one of the fingers, as seen on Figure 4.2, Υ can be calculated 

as the distance ℎ from the finger, calculated according to the Pythagoras’ theorem as (𝛿 ≈ 0) 

ℎ = √(
𝜆

2
)
2

+ (𝑑 +
𝑤

2
)
2

 (4.15) 

and the finger’s distance to the wrist, �̂�, 

Υ = {
�̂� − ℎ, adjacenttoupperfinger,

ℎ − �̂�′, adjacenttolowerfinger.
 (4.16) 

 Finally, the center of mass from the contribution of the fingers’ position can be calculated as 

�̂�0,𝑀 = �̂�2
0 [
0
Υ
0
] (4.17) 

The position of the center of mass of the pen is then the sum of both contributions in equations (4.13) 

and (4.17) 

�̂�1 = �̂�0,𝑀 + �̂�𝑀,1. (4.18) 

 

4.3 Validation 

Firstly, to validate the solution described in the aforementioned sections, the real pen’s angular 

acceleration was used instead of the estimated one in equation (4.3) in order to estimate the pen’s 

position through a simple exercise, where the fingers remain immobile and 16 centimeters apart (more 

than the pen’s width). Also, the pen is initialized with its center of mass at the coordinates (𝑥, 𝑦, 𝑧) =

𝑀 

𝑀 

ȁℎȁ 

𝑟 

𝑟′ 

𝑟 

𝑟′ 

Υ > 0 

𝒙2 

𝒙2′ 

𝒚2 

𝒚2′ 

𝒙2 

𝒙2′ 

𝒚2 

𝒚2′ 

Υ < 0 

ȁℎȁ 

𝑧0 

𝑧0 
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(2, 0, 0) centimeters and with an initial angle of 0 (horizontal). This exercise leads to the pen falling onto 

the lower finger and slipping to the side it is offset to, leading to contact with the upper finger as it rotates 

around the bottom one. As this happens, the friction from the slippage on both fingers brings the pen to 

a stop. For this exercise, the estimated position and position error of the pen, in relation to time, are 

plotted in Figure 4.3. The estimated angle of the pen does not depend on the estimated angular 

acceleration and thus is perfectly accurate. As such, it is not plotted. 

 

Figure 4.3 – Validation of the estimation of the position of the pen using its exact angular acceleration. On the left, 
the x and y components of the pen’s estimated position and real position. On the right, the pen’s position error. In 
black, a vertical line illustrates the time at which contact takes place. 

 

As seen in Figure 4.3, the pen’s position is well estimated by the solution, so much so that the 

graph lines for the real position of the pen are barely visible due to them being obstructed by the 

estimation data, except for the first instant when the system is initialized. Thus, it is concluded that the 

validation is successful and the solution is working as intended. 

Secondly, the angular acceleration estimated in equation (4.3) is compared to the true angular 

acceleration of the pen so as to assess the accuracy of the estimation being made. Given the exercise, 

meaningful angular accelerations are observed at the moment of contact, marked by a black vertical 

line in Figure 4.4, at around 0.11 seconds. 
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Figure 4.4 – Estimation of the pen’s angular acceleration and its real angular acceleration, compared. In black, a 
vertical line illustrates when contact takes place. 

 

Analyzing Figure 4.4, it is clear that the estimated pen’s angular acceleration roughly follows its 

true angular acceleration. When the true angular acceleration has very high values though, or when 

these values have a high rate of change, the estimated angular acceleration does not match the true 

values well. The impact of this mismatch on the prediction of the pen’s position is heavy, illustrated in 

the next figure. 

 

Figure 4.5 – Estimation of the position of the pen using its estimated angular acceleration. On the left, the x and y 
components of the pen’s estimated position and real position. On the right, the pen’s position error. In black, a 
vertical line illustrates when contact takes place. 
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Right away, signal spikes can be seen in Figure 4.5. This is due to the time sample (𝑇𝑠 = 0.01𝑠) 

used in the calculation of the estimated angular acceleration, which resets the values for the estimated 

position to reasonable ones at that rate. Due to this roughness, the estimation of the pen’s position is 

rough as well when fast movements are concerned. In the first 0.1 seconds, there is some smooth 

movement of the pen (rolling on the lower finger) and, as such, the estimation of the pen’s position is 

somewhat accurate for its y component and rough for its x component. At around 0.11 seconds the pen 

suffers an abrupt stop as it collides with the upper finger and therefore suffers high angular accelerations 

(visible in Figure 4.4 as the angular acceleration spikes). Given the accuracy lost in the estimated 

angular acceleration, the estimated position also loses some accuracy and deviates from the real 

position. After the collision, the estimator is accurate as the angular acceleration is smooth throughout 

the rest of the event. 

 Regarding the estimated angle of the pen, it can be estimated smoothly throughout the whole 

event, as it is not computed from the estimated angular acceleration. 
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5 Controller 

The purpose of the controller is to make the pen oscillate from side to side, in between the fingers. The 

goal is for this oscillation to be a smooth movement. For this to be feasible, the grasping force on the 

pen cannot either be too much, as it would restrict the pen’s movement, nor too little, as it would lead to 

the pen slipping off its grasp. 

In this section a controller is introduced that is composed of three parts. These parts consist of a 

controller for the finger’s position, an impedance controller for stable grasping and an object 

manipulation controller. The first two controllers produce a control action of force that, summed, 

represent the control action of force, applied on the finger joints. The third controller produces an action 

of torque, applied to the wrist.  

5.1 Finger position control 

The control of the position of the fingers is essentially needed to keep the fingers close and equidistant 

to the wrist’s axis of rotation, as well as to dissipate energy associated with the movement of the fingers. 

Towards this end, the center-point of the fingers, (𝑟 − 𝑟′)/2, is controlled as a critically damped system 

and the radial velocity of the fingers, �̇� and �̇�′, is fed back negatively. Thus, the control action for the 

upper finger is given as 

𝐹1 = 𝐾𝑝,𝑓 (𝑟𝑟 −
(𝑟 − 𝑟′)

2
) + 𝐾𝑑,𝑓 (�̇�𝑟 −

(�̇� − �̇�′)

2
) − 𝐾𝑣,𝑓�̇� (5.1) 

where 𝑟𝑟 and �̇�𝑟 are the reference position and the reference velocity for the center-point of the fingers, 

respectively, which are set to zero as it is intended that the finger’s center-point be positioned on the 

wrist’s axis of rotation. 𝐾𝑝, 𝐾𝑑 and 𝐾𝑣 are the control gains regarding the position and velocity of the 

center-point of the fingers and velocity of the fingers, respectively. Similarly, the equivalent symmetric 

control action is used for the lower finger, with its respective velocity, 𝑟 ′̇ 

𝐹1
′ = 𝐾𝑝,𝑓 (𝑟𝑟 −

(𝑟 − 𝑟′)

2
) + 𝐾𝑑,𝑓 (�̇�𝑟 −

(�̇� − �̇�′)

2
) − 𝐾𝑣,𝑓�̇�

′. (5.2) 

Consider the displacement of the center point due to gravity alone. Then, for an allowable 

deviation from the wrist’s axis of rotation of about 0.5 millimeters, 𝐾𝑝 can be calculated such that 

𝐾𝑝,𝑓(5 × 10
−4) = (𝑚𝑝 + 2𝑚𝑓)𝑔, (5.3) 

where 𝑚𝑝 is the pen’s mass, 𝑚𝑓 is the mass of one finger and 𝑔 is the acceleration of gravity. Assuming 

that the system is linear, this results in a control gain of 𝐾𝑝,𝑓 ≈ 729, from which follows for a critical 

damping 𝐾𝑑,𝑓 = 2(𝑚𝑝 + 2𝑚𝑓)√
𝐾𝑝,𝑓

𝑚𝑝+2𝑚𝑓
= 10.4. Lastly 𝐾𝑣,𝑓 was determined experimentally, resulting in 

𝐾𝑣,𝑓 = 10. 
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5.2 Stable grasping impedance 

For stable grasping, there needs to be a grasping force such that the frictional force between the pen 

and the fingers is enough to not let the pen slip but not too much that it overly restricts the pen’s 

movement. The control action employed for this task, for the upper finger, consists in a proportional 

control where a reference penetrating distance on the pen is set [10], given as 

𝐹2 = −𝐾𝑝,𝛿(𝛿𝑟 − �̂�), (5.4) 

where 𝛿𝑟  is a reference value for the penetrating distance and 𝐾𝑝,𝛿  is a control gain. The current 

estimated penetrating distance, �̂�, is calculated according to equation (2.6), where the pen’s position is 

estimated, �̂�1, through equation (4.18). Equivalent control action is used for the lower finger. 

𝐹2
′ = −𝐾𝑝,𝛿(𝛿𝑟 − �̂�

′), (5.5) 

Figure 5.1 compares both �̂� and 𝛿, on the two fingers. To note that the upper finger detection is much 

more reliable than the lower one’s. As the upper finger is more important for the control of the system, 

which allows the pen to rotate, than the lower one which holds the pen, this discrepancy in reliability of 

the penetration distance is not disruptive. 

 

Figure 5.1 – Estimation of the penetration distance �̂� and real penetration distance 𝛿, for both fingers. The input 

reference signal is a sine wave of amplitude of 𝐴 = 0.7 and frequency 𝜔 = 19𝑟𝑎𝑑/𝑠. 

 

Consider now an exercise where the pen is held vertically between the fingers, such that the 

only force counter acting the pen’s weight is the frictional force, resulting in 

𝐹𝑡 = 𝑚𝑝𝑔, (5.6) 
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where 𝑚𝑝 is the pen’s mass and 𝑔 is the gravity constant. Splitting the frictional force, so that each finger 

is applying half of this force on the pen and considering the state of dynamic friction between the bodies 

(as it is the least stable state), then the normal force to be applied on the pen by each finger is 

𝐹𝑛 =
𝑚𝑝𝑔

2𝜇𝑑
. (5.7) 

Now, the penetration distance equivalent to such normal force, 𝛿∗, can be obtained from equation (2.19), 

in stationarity �̇� = 0, therefore 𝐾(�̇�) = 𝑘, yielding 

𝛿∗ = √
1

𝑘

𝑚𝑔

2𝜇𝑑

𝑎

, (5.8) 

resulting in 𝛿∗ ≈ 5.2 × 10−5. 

Then, by choosing suitable values for the reference of the penetrating distance 𝛿𝑟 and the control gain 

𝐾𝑝,𝛿, an optimum grasping force can be reached. That said, setting 𝛿𝑟 = 8 × 10
−5, 𝐾𝑝,𝛿 can be calculated 

from 

𝑚𝑔

2𝜇𝑑
= 𝐾𝑝,𝛿(𝛿𝑟 − 𝛿

∗), (5.9) 

resulting in 𝐾𝑝,𝛿 ≈ 2.63 × 10
3. 

5.3 Object manipulation impedance 

The manipulation of the object, adapted from [10], is intended towards the object’s angle. In such case, 

the dynamics of the object are governed by 

𝑇 + 𝑇𝑒𝑥𝑡 = 𝐼𝑧,𝑝�̈� (5.10) 

where 𝑇  is the manipulation torque exerted on the object by the fingertips, 𝑇𝑒𝑥𝑡  is an external 

perturbation torque and 𝐼𝑧,𝑝 is the actual inertia of the pen. The desired interaction of the system is given 

as 

𝑇𝑒𝑥𝑡 = 𝐼𝑧,𝑑�̈� + 𝐷𝑇(�̇� − �̇�𝑟) + 𝐾𝑇(𝑞 − 𝑞𝑟) (5.11) 

where 𝑞𝑟 and �̇�𝑟 are the reference angular trajectory, 𝐼𝑧,𝑑 is the desired apparent inertia and 𝐷𝑇, 𝐾𝑇 are 

the damping and stiffness, respectively. As described in [10], by keeping the inertia unchanged,  

𝐼𝑧,𝑑 = 𝐼𝑧,𝑝. Then, since 𝑇𝑒𝑥𝑡 = 𝐼𝑧,𝑝�̈� − 𝑇, the impedance control law is 

𝑇 = 𝐾𝑇(𝑞𝑟 − �̂�) + 𝐷𝑇(�̇�𝑟 − �̇̂�) (5.12) 

The control gains were manually tuned, set at 𝐾𝑇 = 10  and 𝐷𝑇 = 0 , as the presence of 

overshoot in the angle of the pen is actually beneficial for this task (oscillation of the pen) and therefore 

no damping is required. 
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5.4 Block diagram 

The block diagram for the control method employed, discussed in the above sections, is illustrated in 

Figure 5.2. 

 

Figure 5.2 – Block diagram for the control methods employed, detailed throughout sections 4 and 5. 

 

5.5 Analysis and discussion 

The control action can then be summed up as a force of grasp for the upper and lower fingers, 𝐹 = 𝐹1 +

𝐹2 and 𝐹′ = 𝐹1
′ + 𝐹2

′, respectively, and a torque for the wrist, 𝑇. The system was then given a reference 

signal for the pen’s angle, 𝑞 , corresponding to a sine wave of amplitude 𝐴 = 0.7  and frequency  

𝜔 = 19𝑟𝑎𝑑/𝑠. The pen’s starting position was the origin with mass center along 𝑧0. The controlled action 

was recorded and is displayed in Figure 5.3, below. To note that the positive direction of torque about 

𝑧0 is the anti-clockwise rotation direction and regarding the force of the fingers, a positive force along 𝑦2 

and 𝑦2
′  results in the opening of the upper finger and lower finger, respectively, and a negative force 

results in the closing of the finger. 

On Figure 5.3, the input torque is, expectedly, very similar to the reference signal, cyclical with 

matching frequency, as the wrist performs the torque needed required for the torque applied on the pen 

to match the reference trajectory. 

Regarding the fingers, it is noticeable that the lower finger produces more closing force than the 

upper finger, due to the need of having to hold the pen’s mass and acting as a support rather than 

shaping the pen’s movement. The upper finger however has both positive and negative forces, meaning 

that it both performs an opening and closing force on the pen. This is expected for the task at hand, as 

it requires the upper finger, to at times, open and allow for the pen to roll, while at other times it is 

expected to close and produce a rotating motion in the other direction, thus oscillating the pen on the 

fingertips. It is noticeable that this movement of the fingers is cyclical and has double the frequency of 

the reference signal.  
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Figure 5.3 – Controller action to follow the reference of a sine wave of amplitude of 𝐴 = 0.7 and frequency 𝜔 =
19𝑟𝑎𝑑/𝑠. The positive direction of torque is anti-clockwise and a positive force on the fingers equates to the opening 
of the finger, while the negative force equates to the closing of the finger. 

 

The system was run for a longer duration, with similar cyclical behavior. The controller proved 

to be robust against the slippage of the pen and effective, oscillating the pen according to the reference 

given. In Figure 5.4, the reference is compared to the pen’s trajectory. 

 

Figure 5.4 – Reference signal for the pen’s angle and the pen’s angle 𝑞, side by side. The reference signal is a sine 

wave with amplitude 𝐴 = 0.7 and frequency 𝜔 = 19𝑟𝑎𝑑/𝑠. 
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As illustrated in Figure 5.4, the pen’s angle, 𝑞, roughly follows the reference signal provided, 𝑞𝑟. 

Due to the construction of the controller, some overshoot exists, which is beneficial as it reflects in a 

larger oscillation on the pen. It is noticeable that there is some tracking error in the system, which is not 

meaningful as for this task it is not essential. The controller is deemed successful as it performs the task 

of oscillating the pen while maintaining a grasp on it, with the reference conditions. 

 

5.6 Analysis and discussion of the pen’s estimated 

position, governed by the controller 

Now the accuracy of the observer is assessed in the proposed use case, see section 1.2, where the pen 

is oscillated in between the fingertips, governed by the controlled. The pen was initialized with its center 

of mass between the fingertips (at the origin) and an input of a desired pen angle was given, as a sine 

wave with frequency 𝜔 = 19𝑟𝑎𝑑/𝑠  and amplitude 𝐴 = 0.7 . This frequency was experimentally 

determined as being the resonant frequency of the closed-loop system (see section 6.2) [23]. The 

prediction of the pen’s position, �̂�1 = (�̂�, �̂�, 0) is shown below, as well as the true pen’s position 𝒑1 =

(𝑥, 𝑦, 0) . The prediction of the angle �̂�  is not affected by the inaccuracy of the estimated angular 

acceleration as mentioned above and as such will not be discussed. 

 
Figure 5.5 – Plot of the estimated and real position of the pen, side by side. The time window is that of two system 
cycles, that is, 4𝜋/𝜔. The input reference signal is a sine wave of amplitude of 𝐴 = 0.7 and frequency 𝜔 = 19𝑟𝑎𝑑/𝑠. 

 

In Figure 5.5, the signal spikes due to the time sample used for the angular acceleration are 

seen again. It is evident that the mismatch of the angular acceleration for quick movements results in a 

mismatch in the prediction of the pen’s position in the systems intended use case, which is the fast 
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oscillation of the pen on the fingertips. The mismatched spikes are observed at the instants where the 

pen is under high angular accelerations, when the fingertips force it to oscillate in the other direction 

(time window of 3.08 to 3.16 seconds). At these moments, the prediction has an error of about 5 cm in 

both the x and y components of the pen’s position, a significant error considering that the pen’s width 

and length are 8 mm and 13.2 cm respectively. 

When the pen is not under such angular accelerations, at moments when it is rolling on the 

finger, the detection of the pen’s position is reliable (time window of 3.16 to 3.24 seconds), having a 

small amount of error in both components of the pen’s position.  

All in all, half of the time, the detection of the pen’s position is reliable. This will prove to be 

enough for the controller, as discussed in this section.  
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6 System’s response analysis and exploration 

For the analysis of the system’s response, it is important to define the trajectory of the pen and the 

phases of the rotation cycle. In Figure 6.1, these phases are depicted. 

 

Figure 6.1 – Representation of a half-cycle of the pen oscillation movement on the fingers. On the left, negative 
twisting, on the right, negative rolling. The next half-cycle of the movement would consist of these same two 
movements, in the positive direction of rotation. 

 

The phases in a cycle are four: negative twisting, negative rolling, positive twisting, and positive 

rolling. This movement is similar in each half-cycle, where the only difference is the direction of the 

movement. In the twisting phase the fingers apply a torque on the pen which forces is to change the 

direction of its rotation and begin to spin. In the rolling phase, the fingers apply a small amount of torque 

and let the pen spin freely. 

The system can now be explored in terms of robustness to the pen’s slippage and response. It 

was made to follow the reference of the pen’s angle, 𝑞𝑟. The reference signal of 𝑞𝑟 is a sine wave with 

amplitude 𝐴 and frequency 𝜔. Below, an analysis of a simplified linearized system is discussed. Further 

below, an analysis of the system’s response is discussed, along with its robustness to slippage and a 

comparison to the simplified linearized system.  

In Figure 6.2, a sequence of frames that illustrate the action of oscillating the pen on the 

fingertips is drawn. The frames were sampled at 40 Hz and enough frames are illustrated to show one 

cycle of the system at its resonant frequency, which will be introduced in section 6.1, of 𝜔 = 19𝑟𝑎𝑑/𝑠. 

The phases described in Figure 6.1 can be seen. In Figure 6.3, a sequence of frames at a higher 

frequency is shown (𝜔 = 58 𝑟𝑎𝑑 𝑠⁄ ). 

Twisting Rolling 
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Figure 6.2 – Sequence of frames of the action of oscillating the pen on the fingertips. The reference signal has a 
frequency of 19 𝑟𝑎𝑑/𝑠 and one cycle is illustrated. Sampled from simulation at 40 Hz.  
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Figure 6.3 – Sequence of frames of the action of oscillating the pen on the fingertips. The reference signal has a 

frequency of 58 𝑟𝑎𝑑/𝑠 and two cycles are illustrated. Sampled from simulation at 62.5 Hz.   

(𝑖) 

(𝑖𝑖) 

(𝑖𝑖𝑖) 

(𝑖𝑣) 

(𝑣) 

(𝑣𝑖) 

(𝑣𝑖𝑖) 

(𝑣𝑖𝑖𝑖) 

(𝑖𝑥) 

(𝑥) 

(𝑥𝑖) 

(𝑥𝑖𝑖) 

(𝑥𝑖𝑖𝑖) 

(𝑥𝑖𝑣) 

(𝑥𝑣) 

(𝑥𝑣𝑖) 



42 
 
 

 

6.1 Linearized system analysis 

Before analyzing the model, a simplification of the system was performed with the intent of calculating 

the system’s resonant frequency, which could be compared with the model’s, through its linearization. 

This simplified system is depicted in the next figure, a recall from Figure 2.5 and Figure 2.6. 

 

Figure 6.4 – Representation of important variables for the simplified system. 

 

The system was considered to have an imposed trajectory on the wrist’s rotation, 𝜃, as a harmonic 

oscillator in the form of 𝜃(𝑡) = 𝐵sin(𝜔𝑡 + 𝜙0). The dynamics between the pen and the fingers can be 

equated as 

𝐼𝑧,𝑝�̈� = −2𝑠0𝐹𝑛, (6.1) 

where 𝐹𝑛 is the normal force, as stated in (2.19), in the simplified form of 

𝐹𝑛 = 𝐾𝑒
𝜂�̇�𝛿𝑎. (6.2) 

From Figure 6.4, with some manipulation, the system can be written as only a function of 𝛼 , as  

𝑠0 = r0sin(𝛼) and 𝛿 = (𝑑 + 𝑤 2⁄ − 𝑟0 cos(𝛼)), thus becoming 

𝐼𝑧,𝑝�̈� = −2𝐾𝑟0 sin(𝛼) 𝑒
𝜂 𝑟0sin(𝛼)�̇� (𝑑 +

𝑤

2
− 𝑟0 cos(𝛼))

𝑎

, (6.3) 

By linearizing the system around 𝛼 = 0, the first term of Taylor series will be 

𝜃 < 0 

𝐹𝑛 

𝐹𝑛 

𝛼

𝑞 > 0 
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�̃� =
𝜕𝜏

𝜕𝛼
|
𝛼=0

𝛼 = −2𝐾𝑟0 (𝑑 +
𝑤

2
− 𝑟0)

𝑎

𝛼 (6.4) 

with 𝛼 = 𝑞 − 𝜃. Bearing in mind �̈� = −𝜔𝑟
2𝑞 is the solution to a harmonic oscillator, and 𝜃 = 0 in this 

linearization, then 𝑞 = 𝛼 and 

�̈� = −𝜔𝑟
2𝛼 (6.5) 

from which results, by substitution in (6.4), 

𝜔𝑟 =
√
2𝐾𝑟0 (𝑑 +

𝑤
2
− 𝑟0)

𝑎

𝐼𝑧,𝑝
= √

2𝐾 (𝑑 +
𝑤
2
− 𝛿) 𝛿𝑎

𝐼𝑧,𝑝
. (6.6) 

The resonant frequency, 𝜔𝑟, can then be calculated by using mean values for the penetration distance 

𝛿 . It varies with the frequency, with values between 6 × 10−5𝑚  to 8 × 10−5𝑚  (𝛿  and 𝛿′  from the 

analysis Figure 5.1. Extra weight was given to 𝛿′ as due to the dynamics of the system, 𝛿  has large 

variations in its value as the upper finger moves up and down, as the system starts its rolling phase). 

This results in a resonant frequency for the system of 18.3𝑟𝑎𝑑/𝑠 to 22.7𝑟𝑎𝑑/𝑠. 

6.2 Response of the system to frequency 

The system was evaluated through a range of frequencies, from 1 to 60 𝑟𝑎𝑑/𝑠 and an amplitude of 0.7. 

Its response was analyzed and the pen’s maximum angle 𝑞𝑚𝑎𝑥 as well as the hand’s maximum angle 

𝜃𝑚𝑎𝑥, in absolute value, were recorded. Figure 6.5 illustrates the systems response to such frequencies. 

 

Figure 6.5 – Response of the system to a reference input on the pen’s angle of a sine wave of amplitude 𝐴 = 0.7 

and frequency of 𝜔, ranging from 1 to 60 𝑟𝑎𝑑/𝑠, simulated for 5 seconds. The pen’s absolute value of maximum 

angle, 𝑞𝑚𝑎𝑥, is drawn in blue, while the wrist’s absolute value of its maximum angle, 𝜃𝑚𝑎𝑥, is drawn in red. Black 
crosses are also illustrated, representing frequencies at which the system ended prematurely due to the pen slipping 
off the fingertips’ grasp. 
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From Figure 6.5, it is clear by inspection of the lower frequency responses that there is a 

minimum frequency at which the pen begins to oscillate, which is at around 4 𝑟𝑎𝑑/𝑠. At frequencies 

below this, the maximum angle of both the pen and the wrist match, implying the pen is not allowed to 

oscillate and is simply being rotated by the fingers while grasped tightly. 

At frequencies of 4 to 25 𝑟𝑎𝑑/𝑠 the pen begins to oscillate, as is possible to see in Figure 6.5, 

by the difference in value between both lines. This difference equates to the amount of oscillation on the 

pen, as the wrist need only rotate some angle 𝜃 for the pen to rotate a larger angle 𝑞. This happens due 

to there being some leeway on the pen’s rotation during the rolling phase. The higher the frequency at 

which the system operates, the larger the max angle values for both the pen and the wrist are. The 

difference between these angles, corresponding to the magnitude of the oscillation 𝑞 − 𝜃 , steadily 

increases with the increase in frequency, achieving a maximum at around 19 𝑟𝑎𝑑/𝑠, illustrated on Figure 

6.2. The maximum values for 𝑞 also reach a maximum at this frequency. This observation matches up 

with the resonant frequency calculated in the linearized system in section 6.1 and therefore, the system’s 

resonant frequency is confirmed to be of around 19 𝑟𝑎𝑑/𝑠. The system proves to be stable for this range 

of frequencies. 

At frequencies larger than 25 𝑟𝑎𝑑/𝑠, the system becomes unstable, depicted in Figure 6.5 by 

black crosses on the frequency level at which the system let the pen escape its grasp. This also resulted 

in the lowering of the magnitude of oscillation as the wrist tries to compensate for the slippage of the 

pen. It is also noticeable that starting at this frequency of 25 𝑟𝑎𝑑/𝑠, the increase of the reference 

frequency leads the maximum angle of both the pen and the wrist to decrease in value. This is a result 

of the system operating at a higher frequency than its resonant oscillating frequency, thus not allowing 

the pen to fully complete its rolling phase before being acted upon by an opposing torque on the twisting 

phase, and also due to the system letting the pen slip before managing to oscillate it. 

Curiously, at frequencies of about 45 𝑟𝑎𝑑/𝑠, the system becomes stable once again, but the 

magnitude of the oscillation becomes negative as the maximum rotation of the wrist, 𝜃𝑚𝑎𝑥, becomes 

larger than the maximum rotation of the pen, 𝑞𝑚𝑎𝑥. As previously mentioned, this indicates that the 

system is operating at a higher frequency than its resonant frequency, resulting in the pen barely being 

able to conduct its rolling phase as the twisting phase forces the pen to change its direction of rotation, 

forcing an abrupt stop on the rolling phase. This behavior is illustrated in Figure 6.3. 

Finally, at around 60 𝑟𝑎𝑑/𝑠 , the system becomes once again unstable, with similar 

characteristics to the high frequencies in regard to its phases. High frequencies proved to be very 

computationally intensive to run in simulation and, as a result, frequencies larger than 60 𝑟𝑎𝑑/𝑠 were 

not analyzed. 
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6.3 Cyclical behavior analysis: low and resonant 

frequency 

To analyze the periodicity of the system, at frequencies ranging from 4 to 20 𝑟𝑎𝑑/𝑠 and an amplitude of 

0.7, the parametric plotting of some key variables, such as the pen’s angle and angular velocity, 𝑞 and 

�̇�, together with the wrist’s angle, 𝜃, is of great value. Given the periodic response of the system, the 

following parametric plots have a period equal to two cycles of the input forced reference frequency, 

∆𝑡 = 4𝜋/𝜔. 

  

 

Figure 6.6 – Parametric plot of the pen’s angle 𝑞 and the pen’s angular velocity �̇�. Three different system responses 

are plotted at three different input frequencies, 4, 12 and 20 𝑟𝑎𝑑/𝑠. The responses were recorded over a time period 

of 4𝜋/𝜔 of the input frequency. 

 

From Figure 6.6, the parametric plot has a square shape through all three frequencies and the 

successive cycles reinforce the square shape, meaning cyclical behavior was reached [24]. The twisting 

phases and the rolling phases can be distinguished in this plot as they are represented by the vertical 

edges and horizontal edges of the shape, respectively.  

The impact of the input frequency on the system is very noticeable. An increase in the input 

frequency equates to faster and more abrupt twisting and rolling phases, evident in the straightness of 

the shape’s edges as the frequency increases. The maximum values for the angle and angular velocity,  

𝑞 and �̇�, increase as well, indicating larger and faster oscillations. 

�̇�[𝑟𝑎𝑑/𝑠] 

𝑞[𝑟𝑎𝑑] 
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Figure 6.7 – Parametric plot of the pen’s angle 𝑞 and the wrist’s angle 𝜃. Three different system responses are 

plotted at three different input frequencies, 4, 12 and 20 𝑟𝑎𝑑/𝑠. The responses were recorded over a time period of 

4𝜋/𝜔 of the input frequency. 

 

In Figure 6.7, the phases are visible on the shape of the plot as well. The twisting phase is 

present along the co-vertices of the oval shape, while the rolling phase is present on the vertices of the 

oval. The magnitude of the oscillation is very noticeable in the shape of this plot. At a frequency of 4 

𝑟𝑎𝑑/𝑠, the oval shape has not yet formed and is rather linear, depicting a trajectory of the pen that 

follows the wrist’s, without much room for the rolling phase, where the oscillation of the pen in relation 

to the fingers would take place. As the frequency increases to 12 𝑟𝑎𝑑/𝑠, the shape opens up into the 

oval shape mentioned, with the opening illustrating the presence of the rolling phase. It grows even 

larger when at the frequency of 20 𝑟𝑎𝑑/𝑠, validating the information gathered in Figure 6.5, where an 

increase in frequency lead to the increase of the oscillations, up to a threshold. The cyclicity of the 

system was also validated in Figure 6.7, at each of the stable frequencies. 

 

6.4 Cyclical behavior analysis: high frequency 

At higher frequencies of 46 to 58 𝑟𝑎𝑑/𝑠, the response of the system evolves so as to decrease the 

magnitude of oscillation, 𝑞 − 𝜃, as had been observed in Figure 6.5. On a parametric plot of the pen’s 

angle and angular velocity, Figure 6.8, the system’s responses are still distinguishable from each other 

and the inverse of Figure 6.6 can be observed, where the higher the input frequency is, the lesser the 

impact on 𝑞 and �̇�. 

𝜃[𝑟𝑎𝑑] 

𝑞[𝑟𝑎𝑑] 
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Figure 6.8 – Parametric plot of the pen’s angle 𝑞 and the pen’s angular velocity �̇�. Three different system responses 

are plotted at three different input frequencies, 46, 52 and 58 𝑟𝑎𝑑/𝑠. The responses were recorded over a time 

period of 4𝜋/𝜔 of the input frequency. 

 

It is also noticeable that, although the same period of two cycles of the input reference frequency was 

recorded, the pen only went through one cycle of rotation, indicating that the system is running at a 

frequency higher than the pen’s dynamics allow and suggesting the presence of period doubling [25, 

26], a phenomenon where a new periodic trajectory emerges from the already existing periodic 

trajectory. Investigating this phenomenon further, at the input frequency of 58 𝑟𝑎𝑑/𝑠 , the relevant 

parametric plot can be seen next, in Figure 6.9. 

 

 

 

Figure 6.9 – Parametric plot of the pen’s angle 𝑞 and the wrist’s angle 𝜃, at the frequency of 58 𝑟𝑎𝑑/𝑠. The response 

was recorded over a time period of 12𝜋/𝜔 (6 cycles) of the input frequency. 

�̇�[𝑟𝑎𝑑/𝑠] 

𝑞[𝑟𝑎𝑑] 

𝜃[𝑟𝑎𝑑] 

𝑞[𝑟𝑎𝑑] 
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In Figure 6.9, period doubling is clearly present, evident in the v-shave created in the plot. This 

shape takes form because the pen’s dynamics do not allow it to oscillate at the frequency at hand. The 

presence of a large magnitude of oscillation is also verified, as per the “openness” of the shape in the 

plot, meaning that the rolling phase is very prevalent. There is little to no evidence of both angles moving 

in synchrony, indicating that the twisting phase is very short lived. The pen’s angle does stay within 

bounds though, and the plot is cyclical, proving the system is stable for the frequency at hand. All in all, 

at high frequencies, the pen is limited to the rolling phase while being juggled between the fingers at a 

frequency too high for its resonant frequency. 

 

6.5 Robustness to input amplitude and pen offset 

To try the system for its robustness, its response to different amplitudes of the reference signal was 

recorded and plotted in the graph below, at the frequency of 19 𝑟𝑎𝑑/𝑠. 

 

Figure 6.10 – System’s response to a reference input on the pen’s angle of a sine wave of amplitude 𝐴, ranging 
from 0 to 1.25, and frequency of 𝜔 = 19𝑟𝑎𝑑/𝑠, simulated for 5 seconds. The pen’s absolute value of maximum 

angle, 𝑞𝑚𝑎𝑥, is drawn, in blue, while the wrist’s absolute value of its maximum angle, 𝜃𝑚𝑎𝑥, is drawn in red. Black 
crosses are also illustrated, representing frequencies at which the system ended prematurely due to the pen slipping 
off the fingertips’ grasp. 

 

In Figure 6.10 it is seen that the input amplitude has a linear relationship with both the max 

angle of the pen, 𝑞𝑚𝑎𝑥, and the max angle of the wrist 𝜃𝑚𝑎𝑥. The system is stable for ranges for a range 

of amplitudes of 0 up to 1 and is able to produce a resonant response from the system throughout almost 

all this range, with an exception for amplitudes of less than 0.1, as seen by the difference of 𝑞𝑚𝑎𝑥 and 

𝜃𝑚𝑎𝑥. At an amplitude of 1, the system becomes unstable and does not fully grasp the pen during the 
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duration of the simulation. These findings indicate that the system is very robust in terms of the reference 

signal’s amplitude. 

To further test the limits of the system, an offset was introduced in the pen’s position, such that 

its initial starting position in the simulation was offset by some value. Thus, when grasping, the fingertips 

would not make contact with the vertical axis of the pen’s center of mass. This would result in some 

extra grasping force being required to keep the pen from escaping the fingertips, given the rotating 

trajectory of the pen. Below is a plot of the system’s response to different offset values for the initial 

position of the pen, with a reference signal at the frequency of 19 𝑟𝑎𝑑/𝑠 and an amplitude of 0.7. 

 
Figure 6.11 - System’s response to an offset being introduced in the initial position of the pen, simulated for 5 
seconds. The reference input on the pen’s angle is a sine wave of amplitude 𝐴 = 0.7 and a frequency of 𝜔 =
19𝑟𝑎𝑑/𝑠. The pen’s absolute value of maximum angle, 𝑞𝑚𝑎𝑥, is drawn, in blue, while the wrist’s absolute value of 

its maximum angle, 𝜃𝑚𝑎𝑥, is drawn in red. Black crosses are also illustrated, representing frequencies at which the 
system ended prematurely due to the pen slipping off the fingertips’ grasp. 

 

From Figure 6.11 it is evident that by introducing an offset to the pen’s initial position and thus 

altering the position of grasp on the pen, the system’s response if affected. In fact, the system’s 

magnitude of oscillation, 𝑞𝑚𝑎𝑥 − 𝜃𝑚𝑎𝑥, worsens dramatically with only a few millimeters of offset on the 

pen’s position. Although the system manages to be stable for the first few values of offset, at around 0.9 

centimeters of offset (around 15% of the possible offset, half the length of the pen), the system becomes 

unstable and loses grasp on the pen. 

Although the system manages to remain stable for some of the pen’s positional offset, its 

response worsens considerably with it and as such, the system can then be said to be somewhat robust 

regarding the pen’s initial position, or the position of grasp on the pen regarding its center of mass. 
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7 Conclusions 

7.1 Achievements 

This document goes into detail about how the act of grasping is sensed by the bio-mechanisms of human 

biology and how a robotic hand can be controlled to perform a task in which an object, a pen, is grasped 

and handled to perform a wiggling motion in between the fingertips. 

Through sections 2 and 3 the model of the robotic hand was discussed, following strict contact 

models, where a novel adaptation of the existing frictional model referenced [17] was introduced. The 

model is bio-inspired and, as a result, follows bio-restrictions alike their flesh counterparts, except for 

the neurological delay on the perception and action, left for future work. These limit the access to the 

system’s states, limiting the possibilities for the control action developed thereafter. 

In sections 4 and 5, a solution for the aforementioned task was proposed. It consisted of the 

detection of the pen’s position based on the forces felt on the fingertips followed by the controller. The 

controller consisted of a position controller for the position of the fingers, an impedance controller for the 

grasping of the pen and an impedance controller for the manipulation of the pen. The pen’s position was 

very well predicted for low frequencies, while at higher frequencies some discrepancies do exist. 

However, such discrepancies did not cause the system to become unstable when operating near its 

resonant frequency. The impedance control proved to be smooth, and the resulting forces and torque 

produced were in line with the system’s characteristics. Given their well-functioning, these were 

considered successful. 

The controller was given a reference signal to follow of a sine wave with a given amplitude and 

frequency. It proved quite effective at using the guidance of the reference to oscillate the pen, managing 

to maintain stability while operating at the resonant frequency of the system, of about 19 𝑟𝑎𝑑/𝑠. It also 

proved robust regarding the amplitude of the signal and somewhat robust when faced with an offset on 

the pen’s initial position. 

The system’s response was analyzed regarding the frequency of the reference input signal as 

well. For low values of frequency, no oscillations occur, up to a certain threshold of around 5 𝑟𝑎𝑑/𝑠. At 

frequencies above that, oscillations start to appear in the system. As the frequency of the system gets 

closer to the resonant frequency, of around 19 𝑟𝑎𝑑/𝑠, the oscillations start to get larger. At around 25 

𝑟𝑎𝑑/𝑠  the system becomes unstable (the pen escapes the fingertips’ grasp) and the oscillations 

decrease with the increase in frequency. Then at 45 𝑟𝑎𝑑/𝑠, around double the resonant frequency, the 

system regains its stability, and the phenomenon of period doubling can be observed. 

 

7.2 Future work 

As for the future work this essay enables, one of the main aspects is the addition of inbound and 

outbound delays to the system model, as discussed in section 3.3, to better simulate a true bio-inspired 

mechanism. This implementation is expected to be complex, as a delay of over 100 milliseconds should 

be enough to cause the pen to slip the fingertips’ grasp. 

Furthermore, this model hopes to inspire the study of various forms of dexterous movement 

involving the handling of objects with a non-restrictive grasp and clever use of the fingers to perform 

complex movements with said objects. 
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Appendix A 

Table 5 - First twenty terms for the recursion in (2.21), as found in [14]. 

N 𝑨𝒏 𝑩𝒏 

0 0 1 

1 -3 2 

2 3 2 

3 -27 20 

4 6 5 

5 -759 700 

6 351 350 

7 -6639 7000 

8 1599 1750 

9 -192537 215600 

10 190221 215600 

11 -10993971 12512500 

12 308346453 350350000 

13 -6203405379 7007000000 

14 894162999 1001000000 

15 -41382469053 45815000000 

16 136200425703 148898750000 

17 -113114950247136633 121989767900000000 

18 114732379536286977 121989767900000000 

19 -29101190167836903 30497441975000000 

20 4724140398296547 4879590716000000 

⋮ ⋮ ⋮ 
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